Adaptive nonparametric regression with the K-nearest neighbour fused lasso

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

k-Nearest Neighbour Classifiers

Perhaps the most straightforward classifier in the arsenal or machine learning techniques is the Nearest Neighbour Classifier – classification is achieved by identifying the nearest neighbours to a query example and using those neighbours to determine the class of the query. This approach to classification is of particular importance today because issues of poor run-time performance is not such...

متن کامل

Estimating Individual Tree Growth with the k-Nearest Neighbour and k-Most Similar Neighbour Methods

The purpose of this study was to examine the use of non-parametric methods in estimating tree level growth models. In non-parametric methods the growth of a tree is predicted as a weighted average of the values of neighbouring observations. The selection of the nearest neighbours is based on the differences between tree and stand level characteristics of the target tree and the neighbours. The ...

متن کامل

Small components in k-nearest neighbour graphs

Let G = Gn,k denote the graph formed by placing points in a square of area n according to a Poisson process of density 1 and joining each point to its k nearest neighbours. In [2] Balister, Bollobás, Sarkar and Walters proved that if k < 0.3043 logn then the probability that G is connected tends to 0, whereas if k > 0.5139 logn then the probability that G is connected tends to 1. We prove that,...

متن کامل

Convergence of random k-nearest-neighbour imputation

Random k-nearest-neighbour (RKNN) imputation is an established algorithm for filling in missing values in data sets. Assume that data are missing in a random way, so that missingness is independent of unobserved values (MAR), and assume there is a minimum positive probability of a response vector being complete. Then RKNN, with k equal to the square root of the sample size, asymptotically produ...

متن کامل

CONNECTIVITY OF RANDOM k-NEAREST-NEIGHBOUR GRAPHS

LetP be a Poisson process of intensity one in a squareSn of arean. We construct a random geometric graph Gn,k by joining each point of P to its k ≡ k(n) nearest neighbours. Recently, Xue and Kumar proved that if k ≤ 0.074 log n then the probability that Gn,k is connected tends to 0 as n → ∞ while, if k ≥ 5.1774 log n, then the probability that Gn,k is connected tends to 1 as n → ∞. They conject...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Biometrika

سال: 2020

ISSN: 0006-3444,1464-3510

DOI: 10.1093/biomet/asz071